Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Cord Arnold

Koordinator för Mötesplats Rydbergseminarier

Default user image.

Ultra-stable and versatile high-energy resolution setup for attosecond photoelectron spectroscopy

Författare

  • Sizuo Luo
  • Robin Weissenbilder
  • Hugo Laurell
  • Mattias Ammitzböll
  • Vénus Poulain
  • David Busto
  • Lana Neoričić
  • Chen Guo
  • Shiyang Zhong
  • David Kroon
  • Richard J. Squibb
  • Raimund Feifel
  • Mathieu Gisselbrecht
  • Anne L’Huillier
  • Cord L. Arnold

Summary, in English

Attosecond photoelectron spectroscopy has opened up for studying light–matter interaction on ultrafast time scales. It is often performed with interferometric experimental setups that require outstanding stability. We demonstrate and characterize in detail an actively stabilized, versatile, high spectral resolution attosecond beamline based on a Mach-Zehnder interferometer. The active stabilization keeps the interferometer ultra-stable for several hours with an RMS stability of 13 as and a total pump-probe delay scanning range of (Formula presented.) fs. A tunable femtosecond laser source to drive high-order harmonic generation allows for precisely addressing atomic and molecular resonances. Furthermore, the interferometer includes a spectral shaper in 4f-geometry in the probe arm as well as a tunable bandpass filter in the pump arm, which offer additional high flexibility in terms of tunability as well as narrowband or polychromatic probe pulses. We demonstrate the capabilities of the beamline via experiments using several variants of the RABBIT (reconstruction of attosecond beating by two photon transitions) technique. In this setup, the temporal-spectral resolution of photoelectron spectroscopy can reach a new level of accuracy and precision.

Avdelning/ar

  • Atomfysik
  • Fysiska institutionen
  • LTH profilområde: Avancerade ljuskällor
  • Synkrotronljusfysik
  • LU profilområde: Ljus och material
  • LTH profilområde: Nanovetenskap och halvledarteknologi
  • NanoLund: Centre for Nanoscience

Publiceringsår

2023

Språk

Engelska

Publikation/Tidskrift/Serie

Advances in Physics: X

Volym

8

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Taylor & Francis

Ämne

  • Atom and Molecular Physics and Optics

Nyckelord

  • Attosecond
  • Density matrix
  • High harmonic generation
  • interferometer
  • photoionization
  • RABBIT

Status

Published

Projekt

  • Controlling the photoelectric effect in real-time